A Brief History of Science…

…and a glimpse into its future.

From the time of Aristotle through the Middle Ages, science was natural philosophy. It was a discipline that collected diverse ways of understanding diverse observations about the world, trying to make sense of phenomena with whatever stories seem most appropriate to each situation. 

Beginning with the enlightenment, the idea of “laws of nature” came into currency. There was a culmination in the 19th century of the view that

  • There is an objective world and the nature of that world is physical material — atoms.
  • There are universal laws, no exceptions, that are the same everywhere and have been true for all time. Fixed laws govern the behavior of matter, and matter is all there is.
  • The nature of these laws is microscopic, and our understanding is therefore reductionistic. In other words, everything is made of atoms, atoms behave predictably, and everything from chemistry to sociology is potentially understandable as the collective behavior of atoms. 
  • Science explains everything. There is no room for religious or mythical understandings. “God is dead” said Nietzsche.

Then, in the 20th century, a funny thing happened. Atomic physics, which was supposed to be the foundation of all science, was led by experiment to four fundamental contradictions of what had been the “scientific worldview”.

  1. Determinism was falsified. There are only probabilities at the microscopic level, and you can’t predict the future from what you know of the present, except as a set of probabilities for each outcome.
  2. Reductionism didn’t work. In quantum mechanics, separate particles don’t have separate wave functions (probability functions). It’s all one big wave function, tying together all particles everywhere. (This is entanglement.)
  3. As soon as you get past two particles, the equations become so complicated that we can’t solve them, not even on the biggest computers or the biggest conceivable computers.* We can compute a hydrogen molecule with good precision, because it has only two elections. But something as basic as a single molecule of water can only be understood in an approximate, heuristic way, making assumptions that are validated after the fact by observations of actual water molecules.
  4. The biggest hole in science was carved by the discovery that the world is not an objective material thing, but reality is co-created by the existing probability functions and the observer who measures them. Reality is essentially subjective. 

This last radical idea — that reality is inescapably subjective — was understood early by Max Planck and Niels Bohr, the grandfathers of quantum mechanics; but it was the subject of vigorous debate until 1964, when John S Bell proved that it is a consequence of accepted quantum mechanical theory, now validated by experiment and honored with the 2022 Nobel Prize.

Science today is in a fragile state, a transitional state. On the one hand, there is no disputing these four consequences of quantum mechanics. On the other hand, the 19th century reductionist paradigm is so entrenched in our thinking that we find it too baffling, too disorienting to think in the new way. We are like Wile E. Coyote who has run off cliff but doesn’t doesn’t yet realize that there is no land underneath him.

There is a fifth discovery in the twentieth century, independent of quantum mechanics. Experiments in parapsychology advanced to a level of rigor and an accumulation of statistical data that prove conclusively: living things are able to know things that defy present day science. There is telepathy — information transmitted between minds with no known sensory path that can explain how it is received. And there is precognition, in which our physiology (animals, too) respond to events that have not yet happened. These abilities challenge the notion that science is a hierarchy with physics at the foundation, and that biology can be understood as applied physics and chemistry.

All of experimental science is designed and interpreted on the assumptions 

  • that there is an objective reality, 
  • that the whole universe obeys fixed laws (the Zeroth Law of Science), 
  • that it’s possible to isolate the experimental apparatus from outside influence,
  • and that the future can’t affect the past.

To be fair, these assumptions have taken us a long way. They have been useful, so we can assume that in some circumstances they have been a good approximation.

But they are not strictly true.  

There are only a handful of people in the world thinking about how to do science without making these assumptions, assumptions that our best science has falsified decades ago. 

The world is subjective and connected. Science will have to redefine itself and its methods. Scientific culture and institutions will have to change in response. A new and ancient universe will unfold before us when we look upon it with new eyes. 


* Quantum computers may be an exception

Post a comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s